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Abstract

Whether mathematical and linguistic processes share the same neural mechanisms has been a matter of controversy. By
examining various sentence structures, we recently demonstrated that activations in the left inferior frontal gyrus (L. IFG)
and left supramarginal gyrus (L. SMG) were modulated by the Degree of Merger (DoM), a measure for the complexity of tree
structures. In the present study, we hypothesize that the DoM is also critical in mathematical calculations, and clarify
whether the DoM in the hierarchical tree structures modulates activations in these regions. We tested an arithmetic task
that involved linear and quadratic sequences with recursive computation. Using functional magnetic resonance imaging, we
found significant activation in the L. IFG, L. SMG, bilateral intraparietal sulcus (IPS), and precuneus selectively among the
tested conditions. We also confirmed that activations in the L. IFG and L. SMG were free from memory-related factors, and
that activations in the bilateral IPS and precuneus were independent from other possible factors. Moreover, by fitting
parametric models of eight factors, we found that the model of DoM in the hierarchical tree structures was the best to
explain the modulation of activations in these five regions. Using dynamic causal modeling, we showed that the model with
a modulatory effect for the connection from the L. IPS to the L. IFG, and with driving inputs into the L. IFG, was highly
probable. The intrinsic, i.e., task-independent, connection from the L. IFG to the L. IPS, as well as that from the L. IPS to the R.
IPS, would provide a feedforward signal, together with negative feedback connections. We indicate that mathematics and
language share the network of the L. IFG and L. IPS/SMG for the computation of hierarchical tree structures, and that
mathematics recruits the additional network of the L. IPS and R. IPS.
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Introduction

One of the fundamental properties common to language and

mathematics is the critical involvement of tree structures in those

comprehension and production processes. Indeed, sentences

consist of hierarchical tree structures with recursive branches

[1,2], and mathematical calculations can be also expressed by

hierarchical tree structures [3], which may derive from the unique

and universal property of recursive computation in humans [4].

This point provides a good motivation for the theoretical and

experimental approaches advocated in the present study. Accord-

ing to modern linguistics, the construction of any grammatical

phrase or sentence is based on the fundamental linguistic

operation of ‘‘Merge,’’ which combines two syntactic objects to

form a larger structure [5]. To properly measure the complexity of

tree structures with a formal property of Merge and iterativity

(recursiveness) [6], we recently introduced ‘‘the Degree of Merger

(DoM),’’ which was defined as the maximum depth of merged

subtrees (i.e., Mergers) within an entire sentence [7]. Among

various models that may possibly quantify the complexity of tree

structures, ‘‘number of nodes’’ would be a straight-forward model,

simply counting the total number of non-terminal nodes (branch-

ing points) and terminal nodes of a tree structure. However, this

model cannot capture hierarchical levels within the tree (sister

relations in linguistic terms), whereas the DoM plays a critical role

in measuring hierarchical levels of tree structures, such that the

same numbers are assigned to the nodes with an identical

hierarchical level [8]. Therefore, the model of DoM can properly

capture recursiveness in the whole tree structures. Here we apply

the computational concept of DoM to tree structures in

mathematical calculations, and we hypothesize that the DoM

actually represents specific loads in the computation of hierarchi-

cal tree structures also in mathematics.

Generally speaking, mathematical calculations consist of at least

two components. One component is ‘‘mathematical syntax’’ that

determines how terms and operators are combined together to

form mathematical expressions. We hypothesize that mathemat-

ical syntax is shared with linguistic syntax in a deeper sense, and

that both syntax can be automatically processed without

consciousness or verbalization. The other component is ‘‘mathe-
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matical semantics’’ that deals with the meaning of terms,

operators, and mathematical expressions. There have been a

number of lesion studies and imaging studies, which claimed that

linguistic and arithmetic abilities were separable in the brain [9–

16]. However, they examined participants’abilities in elementary

processing of numbers or variables, i.e., mathematical semantics,
but not those in mathematical syntax. On the other hand,

common activation between linguistic and arithmetic tasks may

not necessarily mean that the same neural system subserves the

same processes included in both tasks, because even a single region

may have multiple functions. A superficial comparison of activated

regions between linguistic and arithmetic tasks cannot resolve this

critical issue. Here we propose a direct test, based on our previous

finding that activations in the left inferior frontal gyrus (L. IFG)

and the left supramarginal gyrus (L. SMG) were parametrically

modulated by the DoM in a linguistic task; indeed, the DoM

turned out to be the best factor among the 19 models tested [7]. If

activations in the same regions are exactly modulated by the DoM

alone in an arithmetic task, then the results would indicate

functional commonality between linguistic and arithmetic com-

putation. We thus focus on mathematical syntax, and our goal is to

clarify whether the computation of hierarchical tree structures in

mathematics and language share the same neural network.

Controversial issues still remain concerning the involvement of

the L. IFG in mathematics. It has been proposed in a lesion study

that the L. IFG is a shared substrate between sentence

comprehension and arithmetic calculations [17], while arithmetic

and algebraic calculations seemed to be preserved in some

agrammatic patients [18,19]. However, the knowledge about

brackets and operators for determining the order of calculations

does not guarantee effective computation of hierarchical tree

structures in mathematical expressions. Moreover, when the

patients were allowed to explicitly write partial results of individual

calculations for either given or generated brackets, as in the case of

the latter studies, individual calculations could be performed

without actual construction of hierarchical tree structures for the

whole expression. Likewise, overlapping activation in the L. IFG

has been reported between sentence comprehension and arithme-

tic calculations [20], while other researchers opposed the

involvement of the L. IFG in mathematics [21]. Regarding these

imaging experiments, various factors including memory-related

factors and applications of arithmetic operations (here denoted as

‘‘number of operations’’; e.g., +, 6, etc.) may have influenced

cortical activation. Therefore, the effect of the DoM should be

segregated from other factors involved.

In the present functional magnetic resonance imaging (fMRI)

study, we prepared a novel arithmetic task, in which participants

performed a series of specified arithmetic calculations without

writing or overtly verbalizing partial results, and they stored two

digits in memory for matching. We presented five digits, and tested

three conditions in the arithmetic task: simple calculation (Simple,

capitalized to indicate a condition name), linear sequence (Linear),

and quadratic sequence (Quad) conditions. Under the Simple

condition, the participants were asked to mentally perform the

addition (e.g., 3+7 = 10), as well as the subtraction, of the upper

two digits (Figure 1A). Under the Linear condition, the partici-

pants were asked to regard the upper two digits (e.g., 3 and 7) as a

part of a linear sequence in increasing order (3, 7, 11, 15, 19,… in

this case), in which the differences between each pair of adjacent

terms were constant (Figure 1B). The participants were instructed

to calculate the third term of the linear sequence. We employed

linear sequences, because it naturally imposed recursive compu-

tation; e.g., 3, 7, 11, 15, 19,…, obtained by nested constructions

((((3+4) +4) +4) +4 …). The arithmetic task could not be correctly

performed without generating such nested constructions to

integrate new terms in a linear sequence. Under the Quad

condition, the participants were asked to regard the lower three

digits (e.g., 2, 4, and 9) as part of a quadratic sequence in

increasing order (2, 4, 9, 17, 28,… in this case), in which the

differences between each pair of adjacent terms resulted in a

subordinate linear sequence (2, 5, 8, 11,… in this case) (Figure 1C).

The participants were instructed to calculate the third term of the

subordinate linear sequence. We theoretically predicted that this

generative process imposed effective computation and actual

construction of hierarchical tree structures (Figure 2A), just like the

generative process of integrating new words in a sentence. As a

basic control, we used a digit-matching (Match) task, in which the

participants simply stored five digits in memory (Figure 1D).

Under each of the three conditions in the arithmetic task, we

examined which of a hierarchical tree structure model or a flat tree

structure model could properly explain the results. A linear

sequence tested under the Linear condition internally combined

arithmetic calculations of addition and subtraction tested under

the Simple condition, whereas a quadratic sequence (e.g., 1, 2, 5,

10, 17,…) tested under the Quad condition internally involved a

subordinate linear sequence (e.g., 1, 3, 5, 7,…). In addition, the

Match task had no arithmetic calculation. Based on the

hierarchical tree structure model (Figure 2A), the idea behind

such nested task designs was to linearly increase the DoM in the

hierarchical tree structures, i.e., ‘‘1, 2, and 3’’ under the Simple,

Linear, and Quad conditions, respectively (see the row of the DoM

under ‘‘Factors in the hierarchical tree structures’’ in Table 1). On

the other hand, it is possible that the participants covertly

verbalized each individual calculation process with digits and

operations (e.g., ‘‘723 = 4’’). If such individual calculations were

represented by the flat tree structure model (Figure 2B), the DoMs

became all ‘‘1’’ under the three conditions (see the row of the DoM

under ‘‘Factors in the flat tree structures’’ in Table 1). However,

the relationships among the generated digits became unnecessarily

complex in the flat tree structure model (compare gray arrows

under the Quad condition in Figure 2A and 2B). We predict that

recursive computation in both linguistic and arithmetic processes

automatically employs hierarchical tree structures; this argument

closely resembles an argument over hierarchical versus linear-

order representation of a sentence, e.g., ‘‘[[To be happy] is fun]’’

similar to [|327|+7].

We fitted parametric models of eight factors (Table 1) to

activations in each identified region, and determined the most

crucial factor accounting for activations. The operational defini-

tions of these factors other than the DoM are as follows. ‘‘Number

of nodes’’ was equal to the total number of digits that appeared in

each tree structure. For the stimuli used in the Match task, there

were five terminal nodes without nonterminal nodes. The factor of

‘‘verbal encoding’’ in the flat tree structures was the total number

of all possible digits and operations verbalized for individual

calculations, which corresponded to the addition of two factors:

‘‘number of nodes’’ in the flat tree structures and ‘‘number of

operations.’’ We also considered three common factors that were

applicable to both types of tree structures. First, ‘‘number of

operations’’ was equated between the Simple and Linear

conditions. Secondly, ‘‘number of generated digits for calculation’’

was the number of digits generated temporarily in a calculation

(i.e., not available on screen). For an example under the Quad

condition shown in Figure 2B, there were four generated digits

used in this calculation, ‘‘2, 5, 3, and 5.’’ Thirdly, ‘‘number of

stored digits for matching’’ was the number of memorized digits

that were used for digit-matching. Its estimate was two and five for
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the arithmetic task and the Match task, respectively (the digits

circled in red in Figure 1 and 2).

By taking the Match task as a basic control for the arithmetic

task, we eliminated any task-related cognitive factors, such as

visual processing of stimuli, the identification of presented digits,

digit-matching, and motor responses. Both ‘‘number of generated

digits for calculation’’ and ‘‘number of stored digits for matching’’

might contribute to loads of short-term memory or ‘‘working

memory,’’ but the Simple – Match contrast was free from these

memory-related factors, because their subtracted estimates were

null or negative (see Table 1). Moreover, the Linear – Simple

contrast was also free from the following factors: ‘‘number of

nodes’’ in either tree structures, the DoM and ‘‘verbal encoding’’

in the flat tree structures, ‘‘number of operations,’’ and ‘‘number

of stored digits for matching.’’ The Quad – Linear contrast

provides no further information, since no additional factors can be

controlled. To examine the functional specialization of cortical

regions in an unbiased manner [22], we adopted whole-brain

analyses in such stringent contrasts as Simple – Match and Linear

– Simple.

Recent neuroimaging studies have examined functional con-

nectivity underlying elementary calculations. For example, it has

been reported that the magnitude of functional connectivity

between the bilateral intraparietal sulcus (IPS) correlated with the

performances of a subtraction task [23]. Another fMRI study with

Figure 1. Examples of the stimuli used in the arithmetic task
and Match task. Five yellow digits, together with a green character as
a cue, were presented for 5 s, followed by the presentation of one
white digit (matching stimulus) for 3 s. For each example, the task-
relevant digits and a brief outline of the calculation processes are
shown in the right panels, where the digits circled in red are the digits
stored in memory for digit-matching. The participants judged whether
one of those stored digits appeared as a white digit; all white digits
shown here are correct examples. (A) Under the Simple condition,
indicated by the presentation of ‘‘6’’ as a cue, the addition and
subtraction of the upper two digits (i.e., two of the five yellow digits)
were mentally performed by the participants. We instructed the
participants to always subtract a smaller value from a larger value. (B)
Under the Linear condition, indicated by the presentation of ‘‘an’’ as a
cue, the third term of a linear sequence initiated by the upper two
digits was calculated by the participants. The first row at the top of the
right panel represents the linear sequence, and the second row with
branches represents the constant differences between each pair of
adjacent terms in the linear sequence, as often used in math textbooks.
(C) Under the Quad condition, indicated by the presentation of ‘‘bn’’ as a
cue, the following arithmetic calculations were performed by using the
lower three digits (i.e., three of the five yellow digits). The first row in
the right panel represents the given quadratic sequence. The second
row represents the differences between each pair of adjacent terms in
the given sequence. The participants were asked to regard the resultant
second row as a linear sequence, whose third term was then calculated
in the same manner as the Linear condition. (D) In the Match task,
indicated by the presentation of ‘‘m’’ as a cue, the participants stored all
of the five digits in memory.
doi:10.1371/journal.pone.0111439.g001

Figure 2. Hierarchical and flat tree structure models for
arithmetic calculations. For each example shown in Figure 1, an
entire calculation process is represented by either hierarchical (A) or flat
(B) tree structure models, where the lowest and leftmost branch
corresponds to the first arithmetic calculation performed. A digit in
black at each nonterminal node is obtained from an arithmetic
operation (e.g., + or 2) indicated just below each node, where ‘–’
denotes a single operation of subtracting a smaller value from a larger
value. The digits in red denote the DoM at individual nodes, where a
reference point of zero is at the top node. The digits in blue denote
‘‘number of operations.’’ A gray arrow denotes corresponding digits
generated temporarily in a calculation. The stored digits are circled in
red, as shown in Figure 1. In the hierarchical tree structure model, each
tree structure is based on recursive computation. Under the Linear
condition, the hierarchical representation of the given example is: [|32
7| +7] = 11. Under the Quad condition, the hierarchical representation
of the given example is: [||224|2 |4–9|| +5] = 8.
doi:10.1371/journal.pone.0111439.g002
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Granger causality mapping reported that a participant group with

high arithmetic scores in a multiplication task had stronger

bidirectional connections between the L. IPS and R. IPS than the

group with low arithmetic scores [24]. Both of those connectivity

studies with elementary calculation tasks did not involve a

recursive application of arithmetic operations. The effective

connectivity during arithmetic tasks with recursive computation,

as well as the connectivity between the L. IFG and bilateral IPS,

should be thus clarified. In the present study, we adopted dynamic

causal modeling instead of Granger causality mapping, because

dynamic causal modeling has been shown to be more effective for

fMRI data [25,26]. Our findings would elucidate the crucial

network of the L. IFG, L. IPS, and R. IPS for computing

hierarchical tree structures in mathematics.

Materials and Methods

Participants
Twenty college students (15 males, aged 18–30 years), who had

not majored in mathematics but studied high school mathematics

including linear and quadratic sequences, participated in the fMRI

experiment. All participants were healthy and right-handed

(laterality quotient: 50–100), according to the Edinburgh inventory

[27]. Prior to their participation in the study, written informed

consent was obtained from each participant after the nature and

possible consequences of the studies were explained. Approval for

the experiments was obtained from the institutional review board

of the University of Tokyo, Komaba.

Stimuli
In each trial (Figure 1), we presented a main stimulus consisting

of five yellow digits (from 1 to 9) and a green character (6, an, bn,

or m). Each green character was used as a cue to indicate one of

the four conditions: ‘‘6’’ for the Simple condition, ‘‘an’’

representing a linear sequence for the Linear condition (e.g.,

an = 1, 3, 5, 7,…), ‘‘bn’’ representing a quadratic sequence for the

Quad condition (e.g., bn = 1, 2, 5, 10,…), and ‘‘m’’ for the Match

task. According to a pilot study, the duration of 5 s for the main

stimulus was long enough for the participants to correctly perform

the task. At the center of the screen, one white digit (from 0 to 9)

was subsequently presented for 3 s as a matching stimulus,

followed by a 200 ms blank to make the duration of the trial twice

as long as the repetition time of the fMRI scans.

Table 1. Estimates of various factors to account for activations.

Factors in the hierarchical
tree structures Factor Simple Linear Quad Match

DoM 1 2 3 0

No. of nodes 6 5 9 5

Simple – Match Linear – Match Quad – Match Linear – Simple

DoM 1 2 3 1

No. of nodes 1 0 4 21

Factors in the flat tree
structures Factor Simple Linear Quad Match

DoM 1 1 1 0

No. of nodes 6 6 12 5

Verbal encoding 8 8 16 5

Simple – Match Linear – Match Quad – Match Linear – Simple

DoM 1 1 1 0

No. of nodes 1 1 7 0

Verbal encoding 3 3 11 0

Common factors Factor Simple Linear Quad Match

No. of operations 2 2 4 0

No. of generated
digits for calculation

0 1 4 0

No. of stored
digits for matching

2 2 2 5

Simple – Match Linear – Match Quad – Match Linear – Simple

No. of operations 2 2 4 0

No. of generated
digits for calculation

0 1 4 1

No. of stored digits
for matching

23 23 23 0

We defined the estimate of a factor as the largest value that the factor can take for each condition: e.g., ‘‘1, 2, 3, and 0’’ for the DoM in the hierarchical tree structures. For
each factor, its unit load should be invariable among all conditions, making an independent subtraction between estimates of the same factor possible. We assumed
that positive and negative values of the subtracted estimates corresponded to activations and deactivations, respectively. Under all tested conditions, ‘‘number of
operations’’ was equal to ‘‘number of Merge,’’ which was the total number of binary branches in the tree structures (Figure 2). Null or negative subtracted estimates
were denoted in bold.
doi:10.1371/journal.pone.0111439.t001

Neural Basis of Hierarchical Processes in Math

PLOS ONE | www.plosone.org 4 November 2014 | Volume 9 | Issue 11 | e111439



www.manaraa.com

To make the stimuli physically identical among the three

conditions in the arithmetic task, except for the cue characters, we

used the same set of main stimuli, in which the five digits were

always arranged in two rows (48 different combinations of digits).

The upper two digits were relevant to the Simple and Linear

conditions, while the lower three digits were relevant to the Quad

condition. The digits in each row were arranged in increasing

order from left to right, while no digit appeared twice in an entire

stimulus. For the upper two digits, we excluded such ubiquitous

combinations as ‘‘2 and 4,’’ ‘‘3 and 6,’’ or ‘‘4 and 8,’’ as well as

trivial combinations with the constant difference of one (e.g., ‘‘2

and 3’’). For the lower three digits, we excluded certain

combinations (e.g., ‘‘1, 2, and 4’’), in which the subordinate linear

sequence became trivial (1, 2, 3, 4,… in this case). In the Match

task, all digits in both rows were memorized; we prepared 72

different combinations of digits, including all combinations used in

the arithmetic task.

The participants wore earplugs and an eyeglass-like MRI-

compatible display (resolution, 8006600 pixels; VisuaStim Digital,

Resonance Technology Inc., Northridge, CA). For fixation, a

small red cross was always shown at the center of the screen to

initiate eye movements from the same fixed position, and the

participants were instructed to return their eyes to this position for

the matching stimulus. Reaction times were measured from the

onset of the matching stimulus. The stimulus presentation and

collection of behavioral data (accuracy and reaction times) were

controlled using the LabVIEW software and interface (National

Instruments, Austin, TX).

Tasks
In each trial of the arithmetic task, the participants were asked

to silently perform a series of specified arithmetic calculations, and

to store two digits in memory obtained from the arithmetic

calculations without using their fingers. The participants then

judged whether or not one of the stored digits matched the white

digit, and responded by pressing one of two nonmagnetic buttons

(Current Designs, Inc., Philadelphia, PA): a right button if

matched (in half of the trials), or a left button if mismatched (in

the other half).

Under the Simple condition (Figure 1A), the participants stored

the results of addition and subtraction in memory. When the result

was a ‘‘two-figure number’’ (e.g., 10), the participants simply

stored the last digit (i.e., the digit in ‘‘the one’s place’’ in math

terms, 0 in this case) in memory. We instructed them to always

subtract a smaller value from a larger value (e.g., |327| = 4), as

represented by the sign of absolute value here. Under the Linear

condition (Figure 1B), the participants were instructed to obtain

the constant difference first by the subtraction (e.g., |327| = 4),

and then to calculate the third term by adding the constant

difference to the second term (4+7 = 11 in this case); they stored

the results of these arithmetic calculations (4 and 1 in this case) in

memory. Under the Quad condition (Figure 1C), the participants

were instructed to perform a series of subtractions (e.g., |224|

= 2, and then |429| = 5) in order to obtain the constant

difference of the subordinate linear sequence by the subtraction

(|225| = 3 in this case). They were further instructed to calculate

the third term of the subordinate linear sequence by adding the

constant difference to the second term (3+5 = 8). They stored the

results of these arithmetic calculations (3 and 8 in this case) in

memory.

In the Match task (Figure 1D), the participants simply stored all

of five yellow digits in memory, and judged whether one of those

digits matched the white digit. The participants underwent

practice sessions for these arithmetic and Match tasks before

scanning. Eight scanning sessions were performed in one day. A

single scanning session contained 36 trials (six trials for each of the

Simple, Linear, and Quad conditions; 18 trials for the Match task).

The arithmetic and Match tasks were alternately performed, so

that MR signals for each condition in the arithmetic task were

sufficiently separated. In the arithmetic task, no stimuli appeared

twice or more times across all scanning sessions, whereas each

stimulus appeared twice in the Match task. To prevent any

condition-specific strategy, the order of the Simple, Linear, and

Quad conditions was pseudorandomized; the orders of tasks and

conditions were also counter-balanced across participants.

MRI Data Acquisition
The fMRI scans were conducted on a 3.0 T scanner (Signa

HDxt; GE Healthcare, Milwaukee, WI) with a bird-cage head coil.

For the fMRI, we scanned 40 axial slices that were 3-mm thick

with a 0.3-mm gap, covering from 252.8 to 78.9 mm from the

anterior to posterior commissure line in the vertical direction,

using a gradient-echo echo-planar imaging sequence [repetition

time = 4.1 s, echo time = 60 ms, flip angle = 90u, field of view =

1926192 mm2, resolution = 363 mm2]. In a single scanning

session, we obtained 72 volumes following four dummy images,

which allowed for the rise of the MR signals. For each participant,

sessions without head movement were used for analyses; the

number of abandoned sessions was less than four for all

participants. After completion of the fMRI sessions, high-

resolution T1-weighted images of the whole brain (192 axial

slices, 16161 mm3) were acquired from all participants with a fast

spoiled gradient recalled acquisition in the steady state sequence

(repetition time = 8.4 ms, echo time = 2.6 ms, flip angle = 25u,
field of view = 2566256 mm2).

fMRI Data Analyses
We performed data analyses with fMRI using SPM8 statistical

parametric mapping software (Wellcome Trust Centre for

Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm/)

[28], implemented on a MATLAB platform (MathWorks, Natick,

MA). The acquisition timing of each slice was corrected using the

middle slice as a reference for the echo-planar imaging data. We

realigned the echo-planar imaging data in multiple sessions to the

first volume in all sessions, and removed sessions that included

data with a translation of.2 mm in any of the three directions and

with a rotation of.1.4u around any of the three axes; these

thresholds were empirically determined from our previous studies

[29–31].

Each participant’s T1-weighted structural image was coregis-

tered to the mean functional image generated during realignment.

The coregistered structural image was spatially normalized to the

standard brain space as defined by the Montreal Neurological

Institute using the ‘‘unified segmentation’’ algorithm with medium

regularization, which is a generative model that combines tissue

segmentation, bias correction, and spatial normalization in the

inversion of a single unified model [32]. After spatial normaliza-

tion, the resultant deformation field was applied to the realigned

functional imaging data, which was resampled every 3 mm using

seventh-degree B-spline interpolation. All normalized functional

images were then smoothed by using an isotropic Gaussian kernel

of 9 mm full-width at half maximum. Low-frequency noise was

removed by high-pass filtering at 1/128 Hz.

In a first-level analysis (i.e., a fixed-effects analysis), each

participant’s hemodynamic responses induced by the trials were

modeled with a box-car function (band-pass during 1–3 s after the

main stimulus onset) convolved with a hemodynamic function.

The 0–1 s period from the main stimulus onset was related with

Neural Basis of Hierarchical Processes in Math
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the identification of a cue, and the 3–5 s period was likely to be

confounded with preparatory processes of digit-matching. We thus

selected the 1–3 s period in order to focus on arithmetic

calculations. Only event-related responses of correct trials were

analyzed. The images of the three conditions in the arithmetic task

and Match tasks were then generated in a general linear model for

each participant, and used for intersubject comparisons in a

second-level analysis (i.e., random-effects analysis). To discount

any general effects associated with task difficulty or performance

differences among the participants, individual error rates (100 –

accuracy), which were more sensitive than reaction times in our

tasks, were entered for each task as a nuisance factor. For all fMRI

data analyses, the statistical threshold was set to P,0.05 for the

voxel level, corrected for multiple comparisons [family-wise error

correction] across the whole brain.

For the anatomical identification of activated regions, we

basically used the Anatomical Automatic Labeling method [33]. In

region of interest analyses, we extracted the percent signal changes

averaged among participants at each local maximum using the

MarsBaR-toolbox (http://marsbar.sourceforge.net/). To statisti-

cally evaluate the fitness of a single factor’s parametric model to

activations, we calculated the coefficient of determination (r2) and

a residual sum of squares with MATLAB; we obtained the fitted

values by multiplying the estimates of the factor (see Table 1) by a

fitting scale. For a no-intercept model, r2 = 12 S(y2ŷ)2/Sy2

should be calculated, where ŷ and y denote the fitted values and

the observed signal changes for each contrast, respectively [34].

For this calculation, we used R software (http://www.r-project.

org/). To further take account of individual variability, we used a

restricted maximum-likelihood method, fitting ‘‘linear mixed-

effects models’’ with individual activations as dependent variables,

with the estimates of each factor as a regressor, and with the

participants as random effects. For this calculation, we used an

nlme (linear and nonlinear mixed-effects models) package (http://

cran.r-project.org/web/packages/nlme/) on R software.

Dynamic Causal Modeling Data Analyses
We performed data analyses with dynamic causal modeling

using DCM10 on SPM8 [35]. We concatenated the scans from the

separate sessions, and reanalyzed the preprocessed data with the

general linear model, which contained two regressors representing

the Quad condition and Match task for making a meaningful

contrast, as well as a regressor representing both the Quad and

Linear conditions for driving inputs. The regressor representing

the Quad condition was also used for a modulatory effect. The

effects of transition between sessions were taken into account with

regressors of sessions. With the volume-of-interest tool in SPM8,

the time series was extracted by taking the first eigenvariate across

all suprathreshold voxels in Quad – Match for each participant

(uncorrected P,0.05), confined within 6 mm from the group local

maximum of a single region.

We specified 18 models with systematic variations in a

modulatory effect and driving inputs (Figure S1). After estimating

all models for each participant, we identified the most likely model

by using random-effects Bayesian model selection on DCM10.

Inferences from Bayesian model selection can be based on the

expected probability, i.e., the expected likelihood of obtaining the

model for any randomly selected participants, or on the

exceedance probability, i.e., the probability that the model is a

better fit to the data than any other models tested. After

determining the best model, we evaluated the parameter estimates

of this particular model by one-sample t-tests [36].

Results

Behavioral Results
The behavioral data are shown in Table 2, indicating that the

tasks were performed almost perfectly. With respect to accuracy, a

one-way repeated measures analysis of variance showed a

significant main effect of condition including the Match task

[F(3, 57) = 20, P,0.0001]. Post-hoc paired t-tests among all

conditions (significance level at a = 0.0083, Bonferroni-corrected)

showed that the accuracy under the Quad condition was

significantly lower than that under the other conditions (P,

0.001), while the differences of accuracy among the other three

conditions were not significant (P.0.1). Regarding reaction times

(RTs), a main effect of condition was significant [F(3, 57) = 12,

P,0.0001], and the RTs under the Quad condition was

significantly longer than those under the Simple condition (P,

0.001). The Match task was also more demanding than the Simple

and Linear conditions, leading to significantly longer RTs (P,

0.001).

Selective Activation in the Arithmetic Task
To identify cortical regions involved in the arithmetic task, we

first tested the Linear – Match contrast with the liberal control of

Match. We then tested the direct Quad – Simple contrast,

inclusively masked with Linear – Match to guarantee the

consistency of activation patterns. In both contrasts, overall

activation was clearly left-dominant. Significant activation was

observed in the L. IFG (Brodmann’s areas 44/45), bilateral SMG

(Brodmann’s area 40), bilateral IPS (Brodmann’s areas 7/39/40),

and precuneus (Brodmann’s area 7), as well as in the bilateral

lateral premotor cortex (LPMC, Brodmann’s areas 6/8), left

anterior short insular gyrus (ASG), and pre-supplementary motor

area (pre-SMA, Brodmann’s areas 6/8) (Figure 3A, 3B, and

Table 3). The left middle temporal gyrus (L. MTG, Brodmann’s

area 21) was significantly activated only in Linear – Match.

We tried to narrow down the critical regions for the

computation of hierarchical tree structures, by using more

stringent contrasts. In Simple – Match, where the memory-related

factors of ‘‘number of generated digits for calculation’’ and

‘‘number of stored digits for matching’’ were eliminated,

significant activation was localized in the L. IFG and L. SMG

(Figure 3C and Table 3), indicating that activations in these

regions were free from the memory-related factors. Moreover, in

Linear – Simple, significant activation was observed in the

bilateral IPS and precuneus (Figure 3D and Table 3), indicating

that activations in these regions were independent from other

possible factors. Although activations in the L. IFG and L. SMG

were below the threshold in Linear – Simple, they were significant

with small volume correction (corrected P,0.05, 9 mm radius

from each local maximum determined by Simple – Match). In

Simple – Match with small volume correction, activations in the L.

IPS, but not those in the R. IPS or precuneus, were significant

(9 mm radius from each local maximum determined by Linear –

Simple). These results suggest that the L. IFG, L. SMG, and L.

IPS, together with the limited contribution of the R. IPS and

precuneus, are well specialized in arithmetic calculations.

Cortical Activations Specifically Modulated by the DoM in
the Hierarchical Tree Structures

At the local maxima of these five regions, we further examined

percent signal changes under each condition in the arithmetic task

with reference to the Match task (Figure 4). A linear modulation of

activations was observed in the L. IFG, L. SMG, and bilateral IPS

among these three conditions, indicating that the results were
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consistent with the DoM in the hierarchical tree structures. The

precuneus showed weaker activations under the Simple condition,

exhibiting relatively larger responses under the more demanding

Linear and Quad conditions (Figure 4E).

Next we examined how well activations in each of the L. IFG,

L. SMG, bilateral IPS, and precuneus correlated with the DoM in

the hierarchical tree structures and other factors. All of the Simple

– Match, Linear – Match, and Quad – Match contrasts predicted

that activations should be exactly zero when a factor produced no

effect or load relative to the Match task. We thus adopted a no-

intercept model, in which the percent signal changes of each

region were fitted with a single (thus minimal) scale parameter to a

model of each factor using its subtracted estimates (Table 4). For

the three contrasts, a least-squares method was used to minimize

the residual sum of squares for the three fitted values (i.e., the three

estimates multiplied by the fitting scale) against corresponding

signal changes averaged across participants (Table 5, Tables S1-

S4 in File S1).

Among the parametric models of eight factors tested, the model

of DoM in the hierarchical tree structures produced by far the

lowest residual sum of squares value (#0.0043) and the largest

coefficient of determination (r2) ($0.99) for the L. IFG, L. SMG,

and bilateral IPS. We further evaluated the goodness of fit for each

model by using one-sample t-tests (significance level at a = 0.0167,

Bonferroni-corrected) between the fitted value for each contrast

and individual activations. The model of DoM for these four

regions produced no significant deviation for the three contrasts

(P$0.13). In the precuneus, the goodness of fit was marginal for

one P-value (P = 0.027) under the Simple condition. By fitting

‘‘linear mixed-effects models,’’ we found that the model of DoM

Table 2. Behavioral data under each condition.

Simple Linear Quad Match

Accuracy (%) 97.662.7 98.562.9 92.665.0 98.861.4

RTs (ms) 8386151 8506150 8956174 9316172

Behavioral data (mean 6 standard deviation) of the accuracy and reaction times are shown for each condition. Only correct trials were included for reaction times,
which were measured from the onset of the matching stimulus.
doi:10.1371/journal.pone.0111439.t002

Figure 3. Significantly activated regions in the arithmetic task. Cortical activation maps are shown for the contrasts of Linear – Match (A),
Quad – Simple, masked with Linear – Match (B), Simple – Match (C), and Linear – Simple (D). Activation is projected onto the left (L) and right lateral
surfaces of a standard brain (family-wise error corrected P,0.05), as well as onto the dorsal surface where there was significant activation. A
transverse plane at z = 1 shows activation in the left anterior short insular gyrus. See Tables 3 for the stereotactic coordinates.
doi:10.1371/journal.pone.0111439.g003
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was by far most likely to explain the modulation of activations for

all five regions (Table 5, Tables S1–S4 in File S1). Evidently, all of

the other factors were clearly less effective than the DoM in the

hierarchical tree structures.

Effective Connectivity among the L. IFG and Bilateral IPS
Because the L. SMG is relatively close to the L. IPS, and the

precuneus locates midway between the bilateral IPS, we focused

on the L. IFG and bilateral IPS alone for modeling the effective

connectivity in the dynamic causal modeling analyses. Here we

assumed intrinsic, i.e., task-independent, bidirectional connections

between the L. IFG and L. IPS, as well as between the bilateral

IPS. We systematically constructed 18 models with driving inputs

into one of these three regions, such that for each input type we

tested six models with a modulatory effect under the Quad

condition on the unidirectional or bidirectional connections (see

Figure S1 for all models tested). Using a random-effects Bayesian

model selection, we showed that the model 1 (Figure 5A), with a

modulatory effect for the connection from the L. IPS to the L.

IFG, and with driving inputs into the L. IFG, yielded by far the

highest expected probability and exceedance probability

(Figure 5B and 5C).

For this best model, we further tested whether the parameter

estimates were significantly different from zero among the

participants. The intrinsic connection from the L. IFG to the L.

IPS [1.02, t(19) = 8.9, P,0.001], and that from the L. IPS to the

R. IPS were significantly positive [0.62, t(19) = 7.0, P,0.001].

In contrast, the intrinsic connection from the L. IPS to the L. IFG

[20.82, t(19) = 5.4, P,0.0001], and that from the R. IPS to the L.

IPS were significantly negative [20.55, t(19) = 3.4, P,0.005]

(significance level at a = 0.0125; Bonferroni-corrected within a

parameter class of intrinsic connections). The positive modulatory

effect for the connection from the L. IPS to the L. IFG [1.03,

t(19) = 6.2, P,0.001], as well as the driving inputs into the L. IFG

[0.71, t(19) = 6.0, P,0.001], were also significant.

Discussion

Here we introduced the DoM to the hierarchical tree structures

in mathematics, and we obtained three striking results. First, we

found significant activation in the L. IFG, L. SMG, bilateral IPS,

and precuneus selectively among the three conditions in the

arithmetic task (Figure 3). Secondly, by examining percent signal

changes in each region, a linear modulation of activations was

observed in the L. IFG, L. SMG, and bilateral IPS among these

three conditions (Figure 4). Moreover, by fitting the parametric

models of eight factors, we found that the DoM in the hierarchical

tree structures best explained the modulation of activations in the

L. IFG, L. SMG, bilateral IPS, and precuneus (Table 5, Tables

S1–S4 in File S1). These results indicate the existence of

mathematical syntax processed in these regions, excluding the

load on ‘‘working memory.’’ The dominance of the hierarchical

Figure 4. Quantified activations modulated by the DoM in the
hierarchical tree structures. The percent signal changes in the L. IFG
(A) and L. SMG (B) were taken from the local maxima in Simple – Match
(circled in yellow in Figure 3C), whereas those in the L. IPS (C), R. IPS (D),
and precuneus (E) were taken from the local maxima in Linear – Simple
(circled in yellow in Figure 3D). Activations are shown for the Simple,
Linear, and Quad conditions with reference to the Match task. Error bars
indicate the standard error of the mean for the participants (N = 20).
Overlaid red dots and lines denote the values fitted with the estimates
(digits in red) for the DoM in the hierarchical tree structures (see
Table 4).
doi:10.1371/journal.pone.0111439.g004
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tree structure model is consistent with our previous results of the L.

IFG and L. SMG activation in the direct comparison between

sentences and letter strings, which were assumed to have

hierarchical tree structures and flat tree structures, respectively

[7]. Thirdly, using dynamic causal modeling, we showed that the

model with a modulatory effect for the connection from the L. IPS

to the L. IFG, and with driving inputs into the L. IFG, was highly

probable (Figure 5). For this best model, the top-down intrinsic

connection from the L. IFG to the L. IPS, as well as that from the

L. IPS to the R. IPS, would provide a feedforward signal with their

reverse connections representing a negative feedback signal. These

results indicate that the network of the L. IFG and bilateral IPS

subserves the computation of hierarchical tree structures in

mathematics.

Previous imaging studies have established that syntactic

processes during sentence comprehension selectively activate the

L. IFG and/or the L. LPMC [29,37–41]. By directly contrasting a

demanding condition for ‘‘working memory,’’ we have previously

demonstrated that both regions are indeed independent from such

domain-general cognitive factors [29], indicating that these regions

have a critical role as a putative grammar center [42]. It has been

a matter of controversy whether the L. IFG is also critically

involved in mathematics. It was claimed in a previous study that

‘‘it [the L. IFG] does not appear to play a dominant role [in

mathematics], which instead is taken up by fusiform, parietal and

precentral cortices,’’ i.e., visuo-spatial areas [21]. In this previous

study, the participants performed a short-term matching task,

which was solved without requiring any arithmetic calculation. In

contrast, Makuuchi et al. [20] showed overlapped activation across

sentence comprehension and arithmetic calculations, with an

increase of activations in the L. IFG for the higher level of

structural hierarchy, although the modulation of activations in the

bilateral IPS were not fully examined. The present results clearly

showed that the DoM in the hierarchical tree structures was by far

more effective than the load on ‘‘working memory,’’ ‘‘number of

operations,’’ and other factors for explaining the L. IFG and

bilateral IPS activations.

According to some previous imaging studies, the domain-

specificity for the arithmetic calculation in the L. IFG and other

regions has remained unclear. For example, in recent fMRI studies

[43,44], two conditions with large and small numbers were

compared in an addition task, and such domain-general factors as

Table 4. The results of fitted scale and values for each activated region, by using ‘‘DoM in the hierarchical tree structures’’.

Brain region Fitted scale Fitted values

L. IFG 0.21 0.21, 0.41, 0.62

L. SMG 0.21 0.21, 0.42, 0.63

L. IPS 0.17 0.17, 0.34, 0.51

R. IPS 0.13 0.13, 0.26, 0.38

Precuneus 0.22 0.22, 0.45, 0.67

We obtained fitted values by multiplying the estimates of ‘‘1, 2, and 3’’ (see Table 1) by the fitting scale. The three fitted values correspond to activations observed
under the Simple, Linear, and Quad conditions (see Figure 4).
doi:10.1371/journal.pone.0111439.t004

Table 5. Fittings and likelihood of various models tested in the L. IFG.

Factors in the hierarchical
tree structures Factor RSS r2 P-values Log-likelihood Likelihood ratio

*DoM 0.0024 . 0.99 0.34, 0.75, 0.97 15.0 1

No. of nodes 0.18 0.70 , 0.0001, 0.054, 0.65 –20.5 3.9 6 10–16

Factors in the flat tree
structures Factor RSS r2 P-values Log-likelihood Likelihood ratio

DoM 0.062 0.90 0.0016, 0.0025, 0.85 –2.5 2.6 6 10–8

No. of nodes 0.13 0.78 , 0.0001, 0.0033, 0.20 –15.8 4.46 10–14

Verbal encoding 0.063 0.89 , 0.0001, 0.14, 0.17 –6.7 3.7 6 10–10

Common factors Factor RSS r2 P-values Log-likelihood Likelihood ratio

No. of operations 0.015 0.98 0.033, 0.21, 0.68 9.6 0.0044

No. of generated digits for
calculation

0.13 0.78 , 0.0001, , 0.0001, 0.24 –15.0 9.1 6 10–14

No. of stored digits for
matching

0.60 0 , 0.0001, , 0.0001, ,

0.0001
n/a n/a

Percent signal changes in the L. IFG were fitted with a single scale parameter to a model of each factor using its subtracted estimates (Table 1) for Simple – Match,
Linear – Match, and Quad – Match. The P-values for the t-tests between the fitted value for each contrast and individual activations are shown in ascending order. Note
that the model of DoM in the hierarchical tree structures (with an asterisk) resulted in the best fit for this region, i.e., with the least residual sum of squares (RSS), largest
coefficient of determination (r2), and larger P-values. The likelihood of models with all null estimates was not calculable (n/a). A likelihood ratio is the ratio of each
model’s likelihood to the best model’s likelihood. The best model of DoM in the hierarchical tree structures was by far more likely than the other models.
doi:10.1371/journal.pone.0111439.t005
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task difficulty might explain the enhanced activations. It should be

noted that any hierarchical processes associated with ‘‘two-figure

numbers,’’ as well as more verbal encoding, are also involved in

the task with large numbers. In the present study, we discounted

any general effects associated with task difficulty by entering

individual error rates for each task as a nuisance factor. We have

previously demonstrated that the L. IFG is a domain-specific

neural system for syntactic computation in language, which is

separable from other domain-general cognitive systems [42]. In

the present study, we indicate that the hierarchical tree structures

in mathematics are also computed by the same domain-specific

system. Our successful approach on mathematical syntax can be

naturally extended to ‘‘musical syntax’’ as well, since harmonic

progressions are expressed by hierarchical tree structures [45].

Lesion studies have previously reported that the damage to the

L. IPS or R. IPS caused deficits in elementary processes of

numbers [46,47]. For example, a lesion in the R. IPS was

associated with deficits in performing even simple subtraction with

one-figure numbers [47]. Moreover, activation in the bilateral IPS

has been frequently observed in fMRI studies on numerosities,

digits, and elementary calculations [48–50]. Unconscious repeti-

tion priming of numbers (e.g., from ‘‘NINE’’ to ‘‘9’’) caused the

activation suppression in the bilateral IPS [51]. The repetition

suppression and recovery for the deviant number (e.g., ‘‘50’’ versus

repeated numbers around ‘‘18’’) in these regions were also

independent from notation changes (e.g., dots to digits or digits

to dots) [52]. A recent fMRI study has reported that high school

arithmetic scores correlated negatively with activations in the R.

IPS during an elementary calculation task, while a positive

correlation was observed in the L. SMG [53]. The L. IPS and

adjacent L. SMG are also involved in language, especially in

vocabulary knowledge or lexical processing [54,55], as well as in

searching syntactic features [7]. Taken these and present results

together, the L. IPS/SMG would be also involved in both

mathematics and language. As regards the precuneus, its

activation has been reported in the previous fMRI studies on

number comparisons or arithmetic calculations [56,57]. Our

results suggest that the R. IPS and precuneus support the L. IPS/

SMG under such demanding conditions as the Linear and Quad

conditions.

Using a visual picture-sentence matching task, we have recently

tested twenty-one patients with a left frontal glioma, and found

abnormal overactivity and/or underactivity in 14 syntax-related

regions [58]. By examining the functional and anatomical

connectivity among those regions, we have clarified three

syntax-related networks. The network I (syntax and its supportive

system) consists of the opercular/triangular parts of the L. IFG, L.

IPS, right lateral frontal regions, pre-SMA, and right temporal

regions, which were overactivated in the patients with a glioma in

the L. LPMC. The network II (syntax and input/output interface)

consists of the L. LPMC, left angular gyrus, lingual gyrus, and

cerebellar nuclei, which were overactivated in the patients with a

glioma in the opercular/triangular parts of the L. IFG. The

network III (syntax and semantics) consists of the left ventral

frontal and posterior temporal regions, which were underactivated

in the patients with a glioma in the opercular/triangular parts of

the L. IFG. Among the activated regions in the present study

(Table 3), the L. IFG, L. IPS, R. LPMC, R. IFG, and pre-SMA

are included in the network I, whereas the L. LPMC and L. MTG

are included in the network II and network III, respectively. The

overall activated regions for the arithmetic calculations thus share

their functional roles with the syntax-related regions in language.

Our previous fMRI study revealed that the functional

connectivity between the L. IFG and L. SMG was selectively

enhanced during sentence processing [59]. A recent dynamic

causal modeling study with a cross-modal picture-sentence

matching task has suggested that the L. IFG received driving

inputs and transferred that information to the temporal regions

[60]. Our recent dynamic causal modeling study has suggested a

top-down intrinsic information flow of syntactic processing from

the L. IFG to the L. SMG, with driving inputs into the L. IFG [7].

This model is consistent with our present results of dynamic causal

modeling, which further indicate that L. IPS activations mirrored

a top-down influence regarding the DoM in the hierarchical tree

structures computed in the L. IFG. For the bottom-up connection

from the L. IPS/SMG to the L. IFG, the modulatory effect under

Figure 5. Effective connectivity among the L. IFG and bilateral
IPS. (A) The best model with a positive modulatory effect for the
bottom-up connection from the L. IPS to the L. IFG, and with driving
inputs into the L. IFG. Mean parameter estimates that exceeded the
statistical threshold (corrected P,0.05) are indicated alongside the
intrinsic connections. Bar graphs show expected probabilities (B) and
exceedance probabilities (C) of all models tested (Figure S1).
doi:10.1371/journal.pone.0111439.g005
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the conditions with the largest DoM was negative in this previous

study, whereas the modulatory effect under the Quad condition

(with the largest DoM) was positive in the present study. While

lexical feedback was minimum for processing jabberwocky

sentences in the previous study, a positive feedback about

operations would be utilized for constructing hierarchical tree

structures in the present paradigm.

The present results of dynamic causal modeling suggest that the

syntactic information on hierarchical tree structures provided in

the L. IFG would be further processed through the top-down

intrinsic connection from the L. IPS to the R. IPS (Figure 5). The

L. IPS and R. IPS may have different roles in processing

arithmetic calculations, but their individual roles in mathematical

syntax should be clarified in the future studies. In addition, it is

possible that the L. MTG, significantly activated in Linear –

Match, is involved in mathematical semantics, as this region would

subserve semantics in language. We indicate that mathematics and

language share the network of the L. IFG and L. IPS/SMG for the

computation of hierarchical tree structures, and that mathematics

recruits the additional network of the L. IPS and R. IPS, with an

information flow from the former to the latter.

Supporting Information

Figure S1 Models tested in the dynamic causal model-
ing analyses. We assumed intrinsic, i.e., task-independent,

bidirectional connections between the L. IFG and L. IPS, as well

as between the L. IPS and R. IPS. Eighteen models were

systematically constructed with driving inputs into one of the three

regions. For each input type, we tested six models for the

modulatory effect under the Quad condition.

(TIF)

File S1 Table S1: Fittings and likelihood of various models tested

in the L. SMG. Table S2: Fittings and likelihood of various models

tested in the L. IPS. Table S3: Fittings and likelihood of various

models tested in the R. IPS. Table S4: Fittings and likelihood of

various models tested in the precuneus.

(DOC)
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